Programme	BSc (Hons) Matl	hematics				
Course Name	A Gateway to Mathematics					
Type of Course	DSC A					
Course Code	MG2DSC MAT	100				
Course Level	100-199					
Course Summary	This course is designed to provide students with a deeper understand- ing of calculus and linear algebra concepts. The course begins with "Partial Differentiation", covering partial derivatives, the chain rule, and the analysis of extreme values and saddle points. It then progresses into "Integral Calculus," focusing on definite integrals, double integrals, integration methods, and the fundamental theo- rem of calculus.					
	The course further explores "Matrices", where students delve into linear systems, coefficient matrices, augmented matrices, and ma- trix operations such as Gauss elimination and back substitution. Elementary row operations, row-equivalent systems, and the vari- ous cases of systems in Gauss elimination are covered, leading to the understanding of row echelon form and its implications. The final segment of the course introduces "Graph Theory," cover- ing foundational definitions and examples. Topics include con- nectedness, adjacency, subgraphs, matrix representations, null graphs, complete graphs, cyclic graphs, path graphs, wheels, regu- lar graphs, bipartite graphs, and the complement of a simple graph					
Semester	2	Credits				4
Course Details	Learning Ap- proach	Lecture 3	Tutorial 0	Practicum 1	Others 0	Total Hours 75
Pre- requisites, If any	Differentiation, Ir				I <u> </u>	

CO No:	Expected Course Outcome	Learning Domains	PO No:			
	Upon the successful completion of the course, the student will be able to					
1	Understand the concept of partial derivatives and experience its applications	U	1, 2, 3			
2	Compute definite integrals of single-variable func- tions, double integrals and understanding their ge- ometric interpretation.	A	1, 2, 3			
3	Apply matrices to solve systems of linear equations using methods of Gaussian elimination and matrix inversion.	А	1, 2, 3, 9, 10			
4	Create an insight into the basics of graph theory	С	1, 2, 3, 9, 10			
*Reme	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE OUTCOMES (CO)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours	
1		Partial Differentiation			
	1.1	Partial derivatives	1		
	1.2	The Chain rule	1	20	
	1.3	Extreme values and saddle points	1		
		Problems (Practicum)	1		
	Text 3:	Chapter 14 - Sections: 14.3, 14.4, 14.7			
2		Integral Calculus: Definite integrals and double integrals			
	2.1	Integrals and Integration methods (Review)	2	20	

	2.2	The Definite Integral	2	
	2.3 The Fundamental Theorem of Calculus (Proof of theorems excluded)		2	
	2.4	Double Integrals over rectangular regions	2	
		Problems (Practicum)	2	
	and in rem fo	: Chapter 7 - Section: 7.1; Chapter 4 - Sections: 4 tegrability excluded), 4.6(dummy variables, The or integrals and integrating rates of changes exc on:14.1	e mean value	theo-
3		Matrices		
	3.1	Linear System, Coefficient Matrix, Augmented Matrix	3	
	3.2	Gauss Elimination and Back Substitution	3	
	3.3	Elementary Row Operations, Row-Equivalent Systems	3	20
	3.4	Gauss Elimination: The three Cases of systems	3	
	3.5	Row Echelon Form and Information from It	3	
		Problems (Practicum)	3	
	Text 2	: Chapter 7 -Section:7.3	1	
4		Graph Theory		
	4.1	Definitions and examples	4	
	4.2	Connectedness, Adjacency	4	
	4.3	Subgraphs	4	15
	4.4	Matrix Representations	4	
	4.5	Null graphs, Complete graphs, cyclic graphs, path graphs and wheels	4	

	4.6	Regular graphs, Bipartite graphs, Complement of a simple graph	4	
		Problems (Practicum)	4	
		: Chapter 2, Sections: 2(Isomorphism excluded), and three puzzles are excluded) Teacher Specific Contents	3 (cubes , pla	atonic
5		an be either classroom teaching, practical session, fi the teacher concerned)	eld visit etc. a Illy	s spec-

 Practicum

 Practicum is designed to provide supervised practical application

 of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

Teaching and		Classroom Procedure (Mode of tra	nsaction)		
Learning Ap- proach	-				
	MODE OF ASSESSMENT				
	Α	A Continuous Comprehensive Assessment (CCA) 30 Marks			
		Components	Mark Distribution		
Assessment		Module Test- I	5 Marks		
Types		Module Test- II	5 Marks		

	Module Test- III 5 Ma		5 Mar	ks		
	Mod	Module Test- IV				
	Assign	Assignment/Seminar				
	Quiz	z/Viva voce		5 Marks		
В	End S	End Semester Evaluation (ESE) 70 marks				
		Question Pattern				
	[Maximu]	m Time 2 Ho	ours, Maxim	um Marks 70]	
		Part A	Part B	Part C	Total	
	Module	2 Marks	6 Marks	10 Marks		
	Ι	2	2	1	5	
	II	2	2	2	6	
	III	2	2	1	5	
	IV	2	2	2	6	
	Total no of questions	8	8	6	22	
	Number of questions to be answered	5	5	3	13	
	Total Marks	10	30	30	70	

TEXT BOOKS:

- Anton, Howard, Irl Bivens, Stephen Davis. *Calculus*. 10th ed. John Wiley & Sons, Inc., 2012.
- 2. Kreyszig, Erwin. Advanced Engineering Mathematics. 9th ed. Wiley International, 2011.
- 3. Thomas, George B., Jr., and Maurice D. Weir. *Thomas' Calculus*. 12th ed. Pearson, 2009.
- 4. Wilson, Robin J. *Introduction to Graph Theory*. 4th ed. Addison Wesley Longman Limited, Edinburgh Gate, Harlow, Essex CM20 2JE, England, 1996.

SUGGESTED READINGS:

- Chartrand, Gary, and Ping Zhang. A First Course in Graph Theory. 2nd ed. Pearson, 2013.
- 2. Spivak, Michael. Calculus and Applications. 11th ed. Pearson, 2023.
- 3. Stewart, James. Calculus: Early Transcendentals. 10th ed. Cengage Learning, 2023.
- 4. Thompson, Silvanus P. Calculus Made Easy. 5th ed. Dover Publications, 2014.

 Thomas, George B., Jr., and Maurice D. Weir. *Thomas' Calculus*. 15th ed. Pearson, 2023.

ADVANCED READINGS:

- 1. Axler, Sheldon. Linear Algebra Done Right. 3rd ed. Springer, 2015.
- 2. Evans, Lawrence C. *Partial Differential Equations: An Introduction*. 2nd ed. American Mathematical Society, 2010.
- 3. Diestel, Reinhard. Graph Theory. 5th ed. Springer, 2017.
- 4. Fichtenholz, Grisha M. *Integration of Functions of Several variables*. 2nd ed. American Mathematical Society, 2010.
- 5. Strang, Gilbert. *Introduction to Linear Algebra*. 5th ed. Wellesley-Cambridge Press, 2016.
- 6. West, Douglas B. Introduction to Graph Theory. 6th ed. Pearson, 2017.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Demonstrate how to visualize tangent planes to surfaces at a specific point using partial derivatives.
- > Check how to obtain absolute maximum using partial derivatives.
- > Use Microsoft excel or spreadsheet to performs basic matrix operations.
- > Find the integrals using integration by parts (Problem Solving).
- > Integrate rational functions by partial fractions (Problem Solving).
- Finding areas using definite integrals.
- > Find the adjacency matrix of some familiar graphs.
- > Find the incidence matrix of some familiar graphs.